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Excessive gestational calorie intake in sows
regulates early postnatal adipose tissue
development in the offspring
Kolapo M. Ajuwon1*, Emily J. Arentson-Lantz2,3 and Shawn S. Donkin1

Abstract

Background: Many pregnancies in the United States are associated with maternal calorie overconsumption. Few data
exist that track the impact of maternal and offspring calorie consumption on the risks for obesity development.

Methods: To determine the effects of maternal calorie intake during gestation on programming for adiposity in the
offspring, pregnant gilts were fed either a normal (NE) or high (HE) energy diet to induce higher than normal (30 %
increase) pregnancy weight gain and the profile of genes related to adipose tissue development was determined in the
subcutaneous adipose tissue of the offspring. Gilts were fed the same lactation diet after farrowing and piglets were
allowed to suckle from their mothers. Offspring were also fed either a normal energy (NE) or a high energy (HE) diet after
weaning (3 weeks of age). Offspring were sacrificed at 48 h, 3 weeks and 3 months of age and the subcutaneous adipose
tissue obtained for gene expression analysis by RT-PCR.

Results: Gilts on the HE diet had higher pregnancy weight gain and backfat thickness than those on the NE diet.
Expression of adipogenic genes, such as peroxisome proliferator activated receptor (PPAR) γ and CCAAT enhancer binding
protein (CEBP) α was not different between offspring from NE and HE mothers at 48 h after birth, but they were higher
(P < 0.05) at 3 weeks in the offspring from HE mothers than NE. Steroid receptor coactivator 1 (SRC1) expression was
higher in HE offspring at 48 h, but not different at weaning (P < 0.05). Inhibitors of wnt signaling, soluble frizzled related
protein (SFRP) 4 and 5 were also higher in HE offspring at 3 weeks. The expression of PPARγ corepressors, sirtuin 1 (Sirt1,
NAD-dependent deacetylase sirtuin-1) and nuclear receptor co-repressor 1 (NCoR1), was higher (P < 0.05) in HE offspring
at weaning. At 3 months, there were no effects of maternal diets on offspring adipose tissue gene expression pattern, but
animals on the postweaning HE diet had a higher (P < 0.05) expression of SFRP5, WNT5a, lower SFRP5/WNT5a and TNFα.
Conclusions: Effects of maternal calorie consumption on adipose tissue genes in the early postnatal life was transient in
this study. Postweaning diet was more effective in changing offspring adipose tissue gene expression pattern and
adiposity in the early postnatal period.
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Background
Many pregnancies in the US are associated with mater-
nal gestational weight gain (GWG) in excess of recom-
mendations. This is linked with an increased risk for
larger for gestational age (LGA) offspring [1–3]. The ef-
fects of maternal GWG persist into early childhood and
are associated with childhood adiposity, a risk of the

offspring being overweight at multiple ages [4–7].

Greater offspring fat mass, a more direct measure of
childhood adiposity, is found to be associated with ex-
cessive GWG. Excessive maternal weight gain directly
affects gene expression pattern in adipose tissue, and
high GWG leads to increased circulating concentrations
of leptin and interleukin-6 [7], two cytokines that are
highly expressed in adipose tissue, and tied to regulation
of appetite and inflammation status respectively.
Currently one in five women are considered obese [8].

Pregnancy concurrent with obesity results in an altered
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intrauterine environment and poses a challenge for both
the mother and fetus [9]. Maternal obesity leads to off-
spring with more subcutaneous fat tissue and elevated
serum triglycerides, leptin and insulin despite the lack of
effect maternal obesity on offspring body weight [10].
This early metabolic programming can persist to adult-
hood resulting in a phenotype that closely resembles the
metabolic syndrome [11], manifested in abnormal glu-
cose homeostasis [12], increased blood pressure [13], ab-
normal serum lipid profiles [10], increased adiposity
[10], hyperphagia [12] and leptin resistance [14]. At
present, the mechanism of adipose tissue programming
in the offspring of obese mothers or mothers with exces-
sive GWG is not known. This is partly because of meth-
odological and ethical issues associated with conducting
this type of research in human infants, and the lack of
substantial adipose tissue in rodent pups. The pig is an
excellent animal model for determining effects of mater-
nal nutrition on adipose tissue programming because,
unlike the rodent pup, the piglet has substantial adipose
tissue at birth, weaning and at adulthood.
In Arentson-Lantz et al., 2014 [15] we presented liver

and intestinal effects of maternal gestational calorie con-
sumption. We hypothesized that maternal high energy in-
take would lead to programming of offspring for increased
adiposity, which would be reflected in the gene expression
pattern in adipose tissue, and that postweaning environ-
ment would temper the effect of maternal diets. There-
fore, because of the potential for changes within adipose
tissue of the offspring as a function of maternal diets, this
work was conducted with the aim of investigating the ef-
fect maternal calorie consumption during gestation on off-
spring adiposity and adipose tissue programming.

Methods
Animals and diets
This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
The Purdue Animal Care and Use Committee (PACUC)
approved all procedures on care and use of pigs de-
scribed in this study. Diets and animal care are as re-
ported in Arentson-Lantz et al. [15]. Briefly, crossbred
gilts (Landrace x Yorkshire terminal cross) kept at the
Purdue University Animal Sciences Research and Edu-
cation Center were assigned to two gestational diets; a
normal energy diet (NE, n = 9) or a high energy diet
(HE, n = 5) diet. Diets are as presented in Tables 1 and 2
and in Arentson-Lantz et al. 2014 [15]. All diets met the
National Research Council Requirements for Swine
(1998). As commonly practiced in the in the industry,
gilts were limit-fed such that those on the NE diet re-
ceived 2.05 kg of feed per day, the HE animals received
3.0 kg but with uninterrupted access to water. The HE

diet supplied 50 % more metabolizable energy than the NE
diet. Backfat at the 12th rib was measured at the end of ges-
tation using ultra sound technique (Aloka American Ltd,
Wallington, CT). Serum samples were collected from the
gilts on days 21 (baseline), 44 and 77 of gestation. Whole
blood was centrifuged at 4 °C at 3000 rpm for 15 min for
collection of serum. Serum blood glucose concentration
was determined with an automatic glucometer (Freestyle,
Alameda, CA). Serum free fatty acid was determined using
the free fatty acids, half micro test kit (Roche Diagnostics,
Indianapolis, IN). Serum insulin was determined using the
Mercodia porcine insulin ELISA kit (Mercodia, Uppsala,
Sweden) according to the manufacturer’s instructions.

Post-farrowing treatments
At farrowing, all gilts were fed the same lactation diet
(Table 2). Piglet offspring were weaned on day 21.

Table 1 Maternal Diets

Ingredients NE5 HE6 Lactation

Corn, g/kg 52.8 74 60.9

Soybean meal, g/kg 12.2 6.5 24.1

Dried Distillers Grains, 30 15 7.5

Swine Grease, g/kg 1 1.65 3

Limestone, g/kg 1.55 1.06 1.44

MonoCal, g/kg 0.75 0.5 1.42

Swine Vitamin Premix1, 0.25 0.17 0.25

Sow Vitamin Premix2, g/kg 0.25 0.17 0.25

Selenium 600 Premix3, 0.05 0.035 0.05

Total Mineral Premix4, 0.125 0.85 0.125

Phytase, g/kg 0.1 0.1 0.1

Salt, g/kg 0.5 0.35 0.5

Rabon Larvacide, g/kg 0.13 0.13 0.13

Diffusion Plus, g/kg 0.25 0.25 0.25

Total intake, kg/day 2.05 3 ad lib

Total Protein, g/day 370 395 ND7

Total Lysine, g/day 16.03 15.8 ND7

Total Carbohydrate, g/day 741 1457 ND7

Total Fat, g/day 119 178 ND7

Metabolizable Energy, 6761 10144 ND7

1Purdue Swine Vitamin Premix: Vitamin A, 544,680 IU/kg; Vitamin D3,
54,448 IU/kg; Vitamin E, 3631 IU/kg; Mendione (Vitamin K), 182 mg/kg; Vitamin
B12, 3.2 mg/kg; Riboflavin, 726 mg/kg; d‐Pantothenic Acid, 1,816 mg/kg;
Niacin, 2,723 mg/kg
2Sow Vitamin Premix: KSU Sow Vitamin Add Pack with CarniChrome from
ADM® (Biotin, 18.1 mg/kg; Folic Acid, 136 mg/kg; Choline, 45,390 mg/kg;
Pyridoxine, 409 mg/kg; Vitamin E, 1,816 IU/kg; Chromium, 16.3 mg/kg;
Carnitine, 4,805 mg/kg)
3Selenium-600 premix: Calcium, 28‐31 %; Selenium, 0.06 % equivalent
to 123.6 mg/kg
4Purdue Non‐Sulfur Trace Mineral Premix: Iron, 51.05 %; Zinc, 20.73 %;
Manganese, 2.86 %; Copper, 1.56 %; Iodine, 0.046 %
5Diet used for NE treatment during gestation
6Diet used for HE treatment during gestation
7Not determined, lactation diet was fed for ad libitum intake
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Immediately after weaning, piglets were kept on a com-
mon diet for 7 days after which they were assigned ei-
ther to a post-weaning normal energy diet (NE) or high
energy diet (HE) (Table 2). All piglets were kept in pens
within an environmentally controlled house. A total of
eighteen piglets from NE gilts were assigned to post-
weaning diets (10 to NE and 8 to HE). Twelve piglets
from the HE gilts were assigned (6 each NE and HE) to
post-weaning diets (Fig. 1). Body weights of piglets was
taken weekly during the grower phase and biweekly dur-
ing the finisher phase. Equal number of males and fe-
male piglets were assigned to each treatment.

Sample collection
Milk was collected from sows at day 14 of lactation.
Sows were given 10 IU of oxytocin via intramuscular
route to stimulate milk let-down. Milk was manually
expressed by a trained operator. Samples were sent to a
commercial laboratory (Dairy One, Ithaca, NY) and ana-
lyzed for fats, solids and energy. To conduct gene ex-
pression analysis of piglet tissues, piglets were killed at
each collection period (48 h, 3 weeks and 12 weeks) ei-
ther with intramuscular injection of atropine, tiletamine-
zolazepam, and xylazine followed by pneumothorax and
cardiectomy or by CO2 exposure followed by severance

Table 2 Nutrient composition of piglet diets

Ingredient Phase 1 (All pigs) Phase 2 (4–6weeks) Phase 4 (6–12 weeks)

NE HE4 NE HE

Corn, g/kg 32.26 32.26 37.355 60.985 52.985

Soybean Meal, g/kg 13.72 13.72 19 24.64 24.64

Dried distillers grains, g/kg ‐ - ‐ 7.5 7.5

Soybean Oil, g/kg 5 5 5 ‐ 5

Limestone, g/kg 0.72 0.72 0.61 1.35 1.35

MonoCal Phosphate, g/kg 0.53 0.53 0.75 0.74 0.74

Swine Vitamin Premix1, g/kg 0.25 0.25 0.25 0.25 0.25

Swine Total Mineral Premix2, g/kg 0.125 .0125 0.125 0.125 0.125

Selenium 600 Premix3, g/kg 0.05 0.05 0.05 0.05 0.05

Dried Whey, g/kg 25 25 25 ‐ ‐

Lactose, g/kg 5 5 ‐ ‐ ‐

Fish Meal, g/kg 4 4 4 ‐ ‐

Phytase (600 PU/g), g/kg, 0.1 0.1 0.1 0.1 0.1

Salt, g/kg 0.25 0.25 0.25 0.35 0.35

Blood meal, g/kg 6.5 6.5 3.75 ‐ ‐

Zinc Oxide, g/kg 0.375 0.375 0.375 ‐ ‐

Soy Concentrate, g/kg 4 4 2.5 ‐ ‐

Carbadox (10 g/lb), g/kg, g/kg 0.25 0.25 0.25 1 1

Lysine‐HCL, g/kg 0.11 0.11 0.25 0.4 0.4

DL‐Methionine, g/kg 0.2 0.2 0.22 0.12 0.12

L‐Threonine, g/kg 0.04 0.04 0.12 0.16 0.16

L‐Tryptophan, g/kg ‐ - 0.02 0.3 0.3

Rabon Larvacide, g/kg 0.025 0.025 0.25 0.25 0.25

Banmith dewormer, g/kg ‐ - ‐ 0.1 0.1

Copper Sulfate, g/kg ‐ - ‐ 0.075 0.075

Crude Protein, kcal/kg 23.96 23.96 22.8 19.4 17.9

Total Lysine, % 1.73 1.73 1.65 1.29 1.21

Metabolizable Energy, kcal/kg 3545 3545 3522 3395 3771
1Purdue Swine Vitamin Premix: Vitamin A, 544,680 IU/kg; Vitamin D3, 54,448 IU/kg; Vitamin E, 3631 IU/kg; Mendione (Vitamin K), 182 mg/kg; Vitamin B12, 3.2 mg/kg;
Riboflavin, 726 mg/kg; d-Pantothenic Acid, 1,816 mg/kg; Niacin, 2,723 mg/kg
2Purdue Non-Sulfur Trace Mineral Premix: Iron, 51.05 %; Zinc, 20.73 %; Manganese, 2.86 %; Copper, 1.56 %; Iodine, 0.046 %
3Selenium 600-Premix: Calcium, 28‐31 %; Selenium, 0.06 % equivalent to 123.6 mg/kg
4HE Phase 2 diet was made by mixing 909 kg of the control Phase 2 diet base with 68 kg of 7 % protein, 60 % fat milk replacer add‐in
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of the jugular vein and exsanguination. This ensured
pain to animals was minimized before death. Subcutane-
ous adipose tissue samples were collected from above
the shoulders. Serum samples were collected at each of
these time points. Samples were snap-frozen in liquid ni-
trogen and in −80 °C freezer for long-term storage for
RNA extraction and RT-PCR. Piglet backfat thickness
was manually measured immediately after euthanasia at
12 weeks above the shoulder (interscapular region) along
the midline of the split carcass [16]. To allow consistency,
this was done by a single operator.

RNA isolation and cDNA synthesis
After the isolation of RNA with the QIAzol reagent, it
was dissolved in nuclease free water (Ambion, Austin,
TX) and concentrations were determined using a Nano-
drop reader (Thermo Scientific, Waltham, MA). RNA
samples were subjected to electrophoresis on a 1 % agar-
ose gel as a check of RNA integrity. One microgram of
total RNA was reverse transcribed with MMLV reverse
transcriptase (Promega, Madison, WI).

Real-time PCR analysis
Real-time quantitative PCR was performed using the
MyiQ real-time PCR detection system (Bio-Rad, Hercules,
CA) using the SYBR mix RT-PCR mix (SABiosciences,

Frederic, MD). The mRNA abundance of different genes
was determined from the threshold cycle (Ct) for the re-
spective genes and normalized against the Ct for 18S
using the ΔΔCt method. Primers used for RT-PCR are
listed in Table 5.

Data analysis
Data were examined for normality and analyzed using
the GLM procedure (SAS Inst. Inc., Cary, NC). When
there was significant main effect, separation of means
was accomplished with the Tukey mean separation pro-
cedure. Differences were considered significant at P <
0.05 and at P < 0.10 for tendency towards significance.
Values in texts are means ± SEM.

Results
Maternal responses
The maternal growth responses show that gilts on the
HE diet gained significantly more (37 %) weight than
those on the NE diet (41.9 vs. 29.6 kg). This was well
within our expected 30 % more weight gain in gilts on
the HE diet. Backfat accumulation was also higher in
gilts on the HE diet than NE (7.6 vs. 4.30 mm) [15].
Thus the increased weight gain in gilts on the HE diet
was associated with increased adiposity. Thus this model
recapitulates the excessive gestational weight gain and
adiposity in some pregnant women in the US. Serum
glucose was also significantly higher in HE gilts (88.8 vs.

Fig. 1 Study design. Pregnant gilts were assigned either to a normal
energy (NE, n = 9) or a high energy diet (HE, n = 5) diet throughout
gestation. After birth(farrowing), piglets stayed with their moms
throughout lactation period (21 days after birth). After weaning on
day 21, piglets were assigned to postweaning diets. A total of
eighteen piglets from NE gilts were assigned to post-weaning diets
(10 to NE and 8 to HE). Twelve piglets from the HE gilts were
assigned (6 each NE and HE) to post-weaning diets

Fig. 2 Body weight changes in offspring from gilts fed either a
gestational normal energy (NE) or high energy (HE) diet and then
fed either postweaning NE or HE diet to 12 weeks of age. Offspring
were weighed on days 21, Body weights were measured at day 22,
29, 43, 57, 71 and 82 days postnatal. Body weights were not affected
by treatment at any point. (NN, piglets from gilts fed gestational NE
diet but fed postnatal NE diet; NE, piglets from gilts fed gestational
NE diet but fed postnatal HE diet; HN, piglets from gilts fed
gestational HE diet but fed postnatal NE diet; HE, piglets from gilts
fed gestational HE diet but fed postnatal HE diet)
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78.6 mg/dl) (P < 0.05), but the concentrations of insulin
and NEFA were not affected by diet. In addition, milk
from the HE gilts had a higher concentration of fat (8.79
vs. 7.2 %), solids (19.9 vs. 18.2 %) and energy (502 vs.
443 KJ/g) than from NE gilts [15]. Thus gestational HE
intake resulted in milk with higher nutrient content than
consumption of the NE diet.

Offspring responses
Weight gain in offspring was not different (Fig. 2) from
birth to 12 weeks. However, offspring on the postnatal
HE diet had more backfat, irrespective of their maternal
dietary group (Fig. 3). Serum glucose was not affected by
maternal treatment, but was higher (91 vs. 67 mg/dL) in
offspring on the postweaning HE diet than those on the
NE diet. Thus serum metabolite parameters may not be
good predictors of long-term effects of maternal and
postweaning diets at 12 weeks of age in pigs.

Adipose tissue gene expression
At 48 h after birth, genes such as SRC1 (steroid re-
ceptor coactivator 1), SFRP2 (secreted frizzled-related

protein 2) and SET domain containing (lysine methyl-
transferase 8 (SETD8) were significantly higher (P <
0.05) in the adipose tissue of piglets from HE gilts,
whereas there was a tendency (P < 0.06) for a higher
HSD1 in the piglets from HE gilts as well (Table 3).

A

B

Fig. 3 Backfat depth of offspring measured at day 84 (12 weeks
postnatal). Backfat was measured at the 12th rib. a Postweaning diet
effect. b separated treatment groups. Bars represent mean ± SEM.
Superscript letters represent significant mean differences (P < 0.05).
Offspring weaned to HE had higher backfat thickness (P < 0.05)

Table 3 Subcutaneous adipose tissue gene expression 48 h
post birth

Gene NE ± SE HE ± SE P-value

Differentiation related genes

PREF1 1.18 ± 0.14 1.06 ± 0.18 0.59

CEBPα 1.06 ± 0.12 1.21 ± 0.16 0.45

PPARγ 1.27 ± 0.18 1.16 ± 0.24 0.71

Proliferation related gene

CCDN1 1.32 ± 0.18 1.09 ± 0.24 0.45

Inflammatory genes

IL6 1.04 ± 0.08 0.99 ± 0.12 0.30

TNFα 2.82 ± 0.77 4.02 ± 1.18 0.31

IL1β 6.97 ± 2.35 11.10 ± 3.32 0.28

Genes involved in fatty acid and gene regulation

FABP4 1.23 ± 0.22 1.31 ± 0.29 0.61

IGF1 2.50 ± 0.66 1.25 ± 0.49 0.36

IGFR1 0.80 ± 0.22 1.22 ± 0.17 0.10

GHR 0.90 ± 0.38 1.56 ± 0.28 0.12

GCCR 1.99 ± 0.48 1.14 ± 0.36 0.35

HSD1 0.87 ± 0.16 1.20 ± 0.12 0.06

SRC1 0.80 ± 0.19 1.33 ± 0.14 0.03*

NCOR1 1.01 ± 0.17 1.50 ± 0.23 0.18

PGC1α 1.62 ± 0.49 2.72 ± 0.69 0.11

SIRT1 1.51 ± 0.49 2.77 ± 0.70 0.11

SERPINE1 1.46 ± 0.44 1.67 ± 0.32 0.38

Wnt signaling related

Wnt5a 2.35 ± 0.72 3.66 ± 1.02 0.31

Wnt3a 14.14 ± 3.97 5.79 ± 2.96 0.11

Wnt10b 2.3 ± 0.52 1.13 ± 0.39 0.12

FZD1 3.13 ± 0.82 1.44 ± 0.61 0.15

FZD2 1.89 ± 0.42 1.04 ± 0.31 0.26

FZD7 1.45 ± 0.37 1.92 ± 0.49 0.43

SFRP2 1.05 ± 0.30 2.06 ± 0.40 0.05*

SFRP4 1.27 ± 0.25 1.29 ± 0.33 0.99

SFRP5 2.85 ± 0.89 0.96 ± 1.16 0.18

Wnt5a/SFRP5 7.87 ± 3.23 10.09 ± 4.42 0.31

Histone methylases related genes

SETDB1 1.28 ± 0.25 1.04 ± 0.32 0.36

SETD8 1.01 ± 0.25 1.91 ± 0.34 0.05*

NE, gestational normal energy diet. HE, gestational High energy diet. Data are
presented as least-square means ± SE. Asterisk (*) within rows indicate significant
differences (P < 0.05)
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At weaning (Table 4), genes involved in differentiation,
PPARγ (peroxisome proliferator activated receptor) and
CEBPα (CCAAT Enhancer binding protein α), were
higher in piglets (P < 0.05) from HE dams. In addition,
FABP4 (fatty acid binding protein 4), involved in fatty
acid transport, was induced under HE diet. Genes such
as NCOR1 (nuclear receptor corepressor 1), SIRT1,
GCCR (glucocorticoid receptor), FZD2 (frizzled class re-
ceptor 2), Wnt inhibitors secreted frizzled-related protein
4 and 5 (SFRP4 and SFRP5) and histone methyltransfer-
ases (SETDB1 and SETD8) were higher in HE piglets than
NE. However, IL1β (interleukin 1β) expression was lower

(P < 0.05) in HE piglets and there was a tendency (P <
0.06) for a lower expression of Wnt3a (Table 5).
At 12 weeks, there was no longer a maternal diet effect

on most genes that were affected by maternal diet at
weaning. Unlike at weaning, there was no effect of ma-
ternal diet or postweaning diet effect on PPARγ and
CEBPα (Fig. 4). Expression of NCOR1 was lower (P <
0.05) in pigs on post weaning HE diet, but maternal diet
effect was not significant. Expression of both SFRP5 and
Wnt5a was higher (P < 0.05) in pigs on the postnatal HE
diet than those on the NE diet (Fig. 5). In addition, there
was a tendency (P < 0.09) for a lower ratio of Wnt5a/

Table 4 Subcutaneous adipose tissue gene expression 21 days post birth

Gene NE ± SE HE ± SE P-value

Differentiation related genes

CEBPα 0.82 ± 0.19 1.86 ± 0.25 0.001*

PPARγ 0.82 ± 0.17 1.76 ± 0.22 0.002*

PREF1 1.45 ± 0.71 3.16 ± 0.92 0.235

Inflammation related genes

TNFα 1.51 ± 0.35 0.67 ± 0.47 0.245

IL6 1.19 ± 0.10 1.01 ± 0.13 0.254

IL1β 2.60 ± 0.59 0.54 ± 0.78 0.039

IL10 1.09 ± 0.12 0.88 ± 0.15 0.269

Genes involved in fatty acid and gene regulation

SRC1 1.05 ± 0.21 1.48 ± 0.27 0.217

SIRT1 0.81 ± 0.58 2.52 ± 0.76 0.031*

NCOR1 0.95 ± 0.24 1.93 ± 0.31 0.019*

GCCR 0.87 ± 0.30 1.97 ± 0.39 0.014*

HSD1 1.01 ± 0.17 1.41 ± 0.22 0.137

SERPINE1 1.23 ± 0.47 2.61 ± 0.61 0.095

FABP4 0.93 ± 0.10 1.33 ± 0.13 0.025*

PGC1α 1.00 ± 0.27 0.91 ± 0.38 0.685

Wnt signaling related genes

Wnt3a 2.66 ± 0.64 0.59 ± 0.87 0.067

Wnt5a 0.88 ± 0.12 1.09 ± 0.17 0.242

Wnt10b 1.00 ± 0.26 1.56 ± 0.35 0.599

FZD1 1.37 ± 0.28 1.04 ± 0.39 0.559

FZD2 0.91 ± 0.23 1.68 ± 0.30 0.047*

FZD7 1.61 ± 0.41 1.34 ± 0.56 0.814

SFRP2 1.18 ± 0.63 2.43 ± 0.82 0.672

SFRP4 0.91 ± 0.25 2.19 ± 0.32 0.006*

SFRP5 1.06 ± 0.16 1.62 ± 0.21 0.048*

Wnt5a/SFRP5 1.47 ± 0.40 0.69 ± 0.55 0.304

Histone methylases related genes

SETDB1 1.04 ± 0.21 1.87 ± 0.29 0.032

SETD8 0.81 ± 0.19 1.90 ± 0.25 0.001*

NE, gestational normal energy diet. HE, gestational High energy diet. Data are presented as least-square means ± SE. Asterisk (*) within rows indicate significant
differences (P < 0.05)
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SFRP5. This ratio determines the amount of available
Wnt5a and the ability of Wnt to regulate adipocyte dif-
ferentiation. We also observed a tendency (P < 0.08) for
a higher IGF-1 (insulin-like growth factor 1) expression
in pigs on the post weaning HE diet than those on the
NE diet. Expression of neurotrophic tyrosine kinase,
receptor-related 2 (ROR2), another Wnt receptor, was
higher in pigs on the post weaning HE diet. In addition,
the expression of TNFα was lower (P < 0.05) in pigs on
postnatal HE diet than those on the NE diet (Fig. 6)
Other genes such as PREF1 (preadipocyte factor 1),
CCDN1(cyclin D), FABP4 (fatty acid binding protein 4),
IGFR1 (insulin-like growth factor receptor 1), GHR
(growth hormone receptor), GCCR, HSD1 (hydroxyste-
roid dehydrogenase 1), SRC1, PGC1α (PPAR gamma co-
activator 1), SIRT1, SERPINE (serpin peptidase inhibitor,
clade E, nexin, plasminogen activator type 1), Wnt5a
(wingless-type MMTV integration site family, member

5a), Wnt10b, FZD1, FZD2, FZD7, SFRP2, SFRP4,
SETDB1 and SETD8 were neither affected by maternal
nor post weaning diet (data not shown). Thus, compared
to week 3, maternal diet had limited effect on offspring
adipose tissue gene expression pattern.

Discussion
Excessive weight gain during gestation remains a major
problem in many women of child-bearing age in the US
and across the globe [17]. In this study we have evalu-
ated the effect of maternal weight gain during gestation
on adipose tissue programming in the offspring. Because
predisposition to obesity development is affected by both
maternal diet during gestation and offspring postnatal
diet, we also determined the effects of postweaning nu-
trition on adipose tissue gene expression pattern at
12 weeks of age as a way of determining programming
for future adipose tissue expansion.

Table 5 List of primers used for RT-PCR

Gene Forward Reverse

18S 5′-ATC CCT GAG AAG TTC CAG CA-3′ 5′-CCT CCT GGT GAG GTC GAT GT-3′

TNFα 5′-CCA CCA ACG TTT TCC TCA CT-3′ 5′-CCC AGG TAG ATG GGT TCG TA-3′

IL1B 5′-CCA AAG AGG GAC ATG GAG AA-3′ 5′-GGG CTT TTG TTC TGC TTG AG-3′

ROR2 5′-CTG GTG CTT CAC GCA GAA TA-3′ 5′-GCA CAT GCA GAC CAA GAA GA-3′

IGF1 5′-GCA GAT AGA GCC TGC GCA ATG GA-3′ 5′-GGG AGA TGG GAG ATG TTG AGA GCA-3′

Adiponectin 5′-TGG AGA AAG CGC CTA TGT CT-3′ 5′-TTT GCC AGT GGT GAC ATC AT-3′

Wnt5a 5′-GGA CCA CAT GCA GTC CAT CG-3′ 5′-GAG GTG TTA TCC ACC GTG CT-3′

SFRP5 5′-TCT TCC TCT GCT CGC TCT TC-3′ 5′-TTT GAC CAC GAA GTC ACT GG-3′

NCOR1 5′-CTG ATC AGC AAG TCC AGC AG-3′ 5′-CTG TGG TAG TCC CCC TCT GA-3′

PPARγ 5′-GCC CTT CAC CAC TGT TGA TT-3′ 5′-GTT GGA AGG CTC TTC GTG AG-3′

CEBPα 5′-TGG ACA AGA ACA GCA ACG AG-3′ 5′-TTG TCA CTG GTC AGC TCC AG-3′

SETDB1 5′-AGG ACA CGT CCA AAT ATG GGT GCT-3′ 5′-AGA GGT GGA CCT GGT GGG GC-3′

SETD8 5′-CGT GAC GAG AAA AGA AAC TCT GGG A-3′ 5′-TGG AAA AGG TGC CAG GGG GC-3′

WNT3a 5′-TCT GGT GGT CCC TGG CTG TGG G-3′ 5′-GCC ACG CTG GGC ATG ATC TCC-3′

FZD1 5′-GAG CCA GCT AGC CGA GGG CCA-3′ 5′-GGC AGT GGG GAG AGC CCT GGT-3′

FZD2 5′-GTG CCC GGC GCA CTA CAC TC-3′ 5′-CCA CGA GTG CAG CGT CTT GC-3′

FZD7 5′-CCA ACG GCC TCA TGT ACT TT-3′ 5′-ATG AAG TAG CAG CCC GAC AG-3′

SFRP2 5′-ACG AGA CCA TGA AGG AGG TG-3′ 5′-ATG GTT TCG TCC AGG TCA TC-3′

SFRP4 5′-GTC CAG GAC AAG AAG CAA GC-3′ 5′-ACG CTC GTT TGG AGT TTG TT-3′

IL6 5′-TCT GGG TTC AAT CAG ACC TGC-3′ 5′-TGC ACG GCC TCG ACA TTT CCC-3′

GCCR 5′-GCG TCT TCA CCC TCC CTG GC-3′ 5′-TGG AAA GTC CAC CGC AAG CCT-3′

HSD1 5′-CCA CCT CGT GCG CAG AAG CA-3′ 5′-TCG CCA TTT TCC CCG CCT GC-3′

SRC1 5′-CCT GCT TCT GGC TAC CAG TC-3′ 5′-TAT CTG CTC AGG GCA CAC AG-3′

GHR 5′-CCA CTG GAC AGA TGG GGT CCG T-3′ 5′-TGA GTC CAC TCT TGA GTG ACA AA-3′

FABP4 5′-TGG TAC AGG TGC AGA AGT GG-3′ 5′-ATT CTG GTA GCC GTG ACA CC-3′

SIRT1 5′-CCA TGG CGC TGA GGT ATA TT-3′ 5′-CTC CAA ATC CAG TTC CTC CA-3′

WNT10B 5′-TTC GGG CCC GGG ATT CGA CA-3′ 5′-GCT TAG GGC CCG ACT GCA CA-3′

SERPINE 5′-ATT CTG GAC GCT CAG CTC AT-3′ 5′-TCC GTC ATT CCC AAG TTC TC-3′
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Recent estimates of pregnancy weight gain in the
US project that less than half of pregnancies in the
U.S. meet the IOM guidelines with a clear majority of
the pregnancies gaining more than the recommended
amount of weight based on pre-pregnancy BMI [18].
Recent evidence also suggests GWG is associated with
increased offspring birth weight independent of genet-
ics [19]. Fat deposition is a major component of ma-
ternal weight gain [20]. During gestation there is
accumulation of protein, fat, water and minerals into
the products of conception (fetus, placenta and amni-
otic fluid) as well as the maternal uterus, mammary
gland, blood and adipose tissue [21]. Fat accretion is
targeted primarily to the subcutaneous adipose tissue
depots in the hips, back and upper thighs [22, 23] in

a pattern unique to pregnancy. Therefore, results of
the higher backfat accumulation in the gilts on the
gestational HE diet indicate that the increased calorie
consumption resulted in higher maternal adiposity.
However, there was no effect of maternal diet on off-
spring birth weight, weaning weight or weight at
12 weeks. This is in contrast to studies where mater-
nal calorie consumption and obesity have been shown
to lead to increased offspring weight [1, 3, 4]. How-
ever, this may indicate the limitation of the experi-
mental diets used in this study to affect offspring
weights in the immediate postnatal period. The in-
creased expression of genes such as SRC1, SFRP2,
SETD8 and the trend for a higher HSD1 at 48 h after
birth in piglets from mothers on the HE diet
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Ajuwon et al. BMC Nutrition  (2016) 2:29 Page 8 of 12



indicates unique adipose tissue effects of maternal
diet. The induction of SETD8 is consistent with maternal
diet causing epigenetic changes in the offspring in a way
that can affect offspring adiposity. Both SETD8 and
PPARγ co-regulate each other in a positive feedback loop
during adipogenesis, and the suppression of SETD8 sup-
presses adipogenesis [23]. Thus, as established through
surgically-induced placental insufficiency [23, 24] and
diet-induced maternal obesity [25], consumption of excess
energy during gestation in pigs can also result in the

modification of the histone code. Additionally, SRC1 in-
creases the transcriptional activity of PPARγ [26]. Soluble
frizzle related receptors (SFRP) are negative regulators of
wnt signaling [27]. Their binding to wnt prevents the in-
hibitory effects of wnt on adipogenesis [28] and SFRP 1–4
are adipokines that are upregulated in human models of
obesity [29]. Thus upregulation of SFRP2 in the adipose
tissue of piglets from mothers on the HE diet is consistent
programming for increased adipogenic potential in those
offspring through the inhibition of wnt signaling.
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Clinical implication
Developmental plasticity extends past gestation to in-
clude neonatal life [30, 31]. The data obtained at 3 weeks
fall within this perinatal programming window. Indeed,
increased expression of multiple genes at 3 weeks sug-
gest a significant maternal effect. Higher expression of
genes involved in differentiation (PPARγ, CEBPα and
FABP4, fatty acid binding protein 4) suggest increased
differentiation potential in HE offspring at weaning, be-
cause these genes are known to directly increase adipo-
cyte differentiation and are induced in several models of
obesity [32]. The lower expression of NCOR1, a

transcriptional suppressor of PPARγ, and the upregula-
tion of SETD8 (a transcriptional activator of PPARγ) and
wnt inhibitors (SFRP4 and SFRP5), also provide evidence
that offspring from the HE gilts have increased adipo-
genic potential at 3 weeks. The induction of GCCR in
offspring from HE gilts is consistent with the established
effect of glucocorticoids in increasing adipogenesis [33].
However, higher expression of SIRT1, SETDB1 and
FZD2, negative regulators of PPARγ and adipogenesis
[34–36] also suggests that HE diet may induce negative
feedback mechanisms to limit adipose tissue expansion
in the offspring. The lower expression of IL1β in HE
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piglets indicates lower inflammation status and suggests
a healthy adipose tissue expansion in the HE offspring.
This is not surprising as the gene expression profile sug-
gests a higher PPARγ activity at 3 weeks, and increased
PPARγ activity is associated with increased adipose tis-
sue expansion but reduced inflammation [37]. This
phenomenon is known as healthy adipose tissue expan-
sion due to the lack of inflammation [38]. This is in con-
trast to pathological adipose tissue expansion that may
be accompanied by increased inflammation [39]. The in-
creased expression of adipogenic genes in the adipose
tissue of HE gilts may be tied to the increased lipid (and
presumably energy) content of the milk from HE gilts.
As previously established, offspring exposed to a calorie-
rich suckling period exhibit increased adiposity, hyper-
leptinemia and hypertension during adulthood [40]. In
addition, pups reared in small litters, which presumably
have access to greater food supply, exhibit adipocyte
hyperplasia and obesity by the end of a 21-day suckling
period [41]. Artificially reared pups on a high carbohy-
drate diet during the suckling period also experience in-
creased adiposity [9]. Thus, increased maternal calorie
consumption during gestation may predispose offspring
to early increase in adipose tissue expansion which may
lead to future obesity.
However, at 12 weeks of age, most of the program-

ming effects seen in the adipose tissue at 3 weeks had
completely disappeared, and the effect of the postwean-
ing HE diet was predominant. The higher expression of
NCOR1 and SFRP5 in pigs on postweaning HE diet is
consistent with increased adipogenic potential from the
postweaning HE diet. However, negative regulators of
adipogenesis, Wnt5a and ROR2 (receptor tyrosine
kinase-like orphan receptor 2), were also induced, poten-
tially to limit adipose accretion from the HE diet. Never-
theless, the tendency (P < 0.09) for a lower ratio of
Wnt5a/SFRP5 and higher IGF-1 support an increased
adipogenic potential on the post weaning HE diet. A
healthy adipose expansion may be occurring as a result
of the HE diet as expression of TNFα (tumor necrosis
factor-α) was lower on the HE diet than the NE. This is
reflected in the higher backfat in the offspring on the
postweaning HE diet. Thus, although effects of high ma-
ternal calorie consumption is reflected in increased cap-
acity for adipose tissue expansion in early life in the
offspring, these effects may not be permanent and post-
weaning diets may alter the effects of maternal gesta-
tional diet on the risk for obesity development.

Limitations
Because the pigs were killed at 12 weeks of age, we were
not able to determine the final effect of both gestational
and postweaning HE diets on adiposity in adult pigs.
However, our data support a significant programming of

adiposity by maternal and immediate postnatal dietary
energy intake. The effects of these initial periods on the
final adiposity in the mature offspring will need longer
term studies than was done in the current study.

Conclusions
Effects of the higher energy content in the maternal and
postweaning diets are observable in the adipose tissue in
the offspring, potentially setting the stage for greater adi-
posity in adulthood. Thus, the pig represents an excellent
animal model for investigating the effects of both maternal
and offspring dietary energy consumption on offspring cap-
acity for adipose tissue deposition. Therefore, unlike human
infants, the pig model can be used for determining adipose
tissue programming across all ages in the offspring.
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